

RESOURCES FOR TEACHING MATHEMATICS

Vso

INTRODUCTION

This guide contains ideas for making, using and storing teaching aids and resources that trainers, teachers and children can use to help with the teaching, learning and understanding of mathematics.

Why are concrete materials important for the teaching of mathematics? Understanding and meaning are central to a child's mathematical development and using concrete materials aids this process. Without understanding no strategy is meaningful. Many schools do not have professionally manufactured maths resources because they are expensive. This guide helps maths teachers solves this and will enable teachers and children to access a wealth of maths resources to make teaching more effective and learning both meaningful and fun.

It shows how resources can be made from locally found objects and waste materials that cost nothing, as well as cheap readily-available materials. Photos of actual resources are shown along with details of how to make them and suggestions of how to use them. It is key that enough resources are made for children to manipulate them. They should not be used just as a demonstration. Making multiple copies takes more time but is well worth the effort. It is pointless just using one example with a class with the teacher holding it up and showing it to the children.

Once resources have been made, it is important that they are stored properly to ensure they last a long time. Children must be taught to respect and look after the materials and to return them to their proper place. They should be accessible to the children so that when they need to use them they know where to find them. Labelling bags and containers is vital so children can find them easily and know where to return them. There are some suggestions for different methods of storage at the back of the guide.

It is also important that a variety of resources are available (for example there are many different materials for teaching place value - exploring different materials will deepen understanding.) This also relieves the pressure of making many sets of the same resources as children can use different resources that teach the same concept and swap them - for example one group can use place value blocks while another uses an abacus.

This guide should be used as a source of ideas and the resources can be made by trainers to demonstrate and use with teachers and children. By allowing teachers to try out the resources as if they are the children they will develop

their understanding of this method of teaching as it may be new to them. If possible, use the materials with the children in a demo lesson so the teachers really understand how they can be used.

All of the materials in this guide were made by me as a volunteer on placement with VSO using waste and locally sourced materials at low or no cost. They have been tried and tested with educators, teachers and children.

Mary Watkins.

You are free to copy and redistribute the material in any medium or format, but must attribute and credit the materials. You may not use the material for commercial purposes. If you remix, transform or build upon the material you may not distribute the modified material.

There are also accompanying videos available. Search "MESHGuides Youtube" and further educational research and information http://www.meshguides.org/

Resource picture and description	How to make	How to use	Other comments
1. Show Me' boards. One side blank, the other side with a grid (eg 5X4) Show me board!	Thin wood or thick cardboard and cut a rectangle (ideally between A5 and A4 size). Remove any tape from the cardboard. Paint black on both sides. Draw a grid of squares on one side using white paint (NB this is not essential)	A. Individual (if there are enough boards), pair and group work. Children write on the boards with chalk and when the teacher gives the signal (eg 1,2,3 SHOW ME) the pupils all hold up their boards towards the teacher. Easy to see who is participating and to assess answers. B. Good for draft work, practising writing numbers, rough workings for maths problems, part-part-whole diagrams, number sentences, etc. C. The grid side can be used to help with place value - to make sure numbers are written correctly or for drawing simple graphs or an abacus for place value. D. The grid side is useful for fractions and for playing maths games such as bingo and dice games. E. Fractions - draw different shapes and shade half, quarter etc F. Shape drawings - draw a shape as asked by the teacher or another child in pair or group work G. Drawing clock faces and marking the hands on to show the time asked H. Practising drawing different types of lines I. Estimating in centimetres - eg teacher asks children to draw something about 6 cm long etc J. Playing "Guess me". Child (or teacher) draws a shape, writes a number etc. Give clues for the other children to guess what is written. Or children can ask questions that can only be answered with Yes/No. Eg does it have four sides? K. When using with the whole class it is important that children are given thinking time and that they only show their boards on the signal from the teacher.	Probably the most versatile and essential of the classroom materials. Can be used in every lesson. Allows instant assessment of the whole class and ensures 100\% participation. Children may be excited the first few times they use the boards but if they are used daily they will soon regard them as the 'norm' and enjoy using them without disturbance.

Use small wooden cubes (about 4 or 5 cm) and marker pen to mark the dots or write numbers.

Dots 1-6
Dots $0-5$ (one side is blank and the others are 1-5 dots)

Make cubes from cardboard.
Draw gridlines of squares (4 cm or 5 cm or the width of the ruler is easiest) and then cut out a net of 6 squares. Fold along the lines (using a ruler to fold against makes them straighter) and stick using tape to make a cube.
Milk and juice cartons make excellent cubes as they are foil lined making them easy to wipe clean as well as looking very nice!

If there isn't enough card to make a net, squares can be stuck together to make a cube. They can also be stuck onto paper first in a net formation and then folded and stuck.

Using large squares (eg $20-30 \mathrm{~cm}$ sides) you can make a large classroom dice. If this has plastic pockets stuck on the side then flashcards can be put into the pockets and the dice is multi purpose
A. Pair or group work. Roll the dice. Count the dots and tell the others the number. Then clap the number. Can be done with one or two dice.
B. Play a game - either in pairs or divide a group into two teams (2, 3 or 4 in a team depending on the group size) Using paper or 'Show Me' boards each team writes the numbers between 2 and 12 (if using the 1-6 dots) or 0-10 (if using the 1-5 dots). They take it in turns to throw two dice (with group work two children in the same team can throw one dice each to increase participation). They add the dots and if they have the number written down they cross out the number (or cover it with a stone or bottletop). If the total is already covered then cover numbers that add to make it. Eg if the total is seven then they could cover 5 and 2,1 and 6 , or 3 and 4 . Keep playing until all numbers are gone. Every time they throw they must say the answer to practise the calculations.
Winners are the first to cross out their numbers or the team with the most numbers crossed out when time is up. You can also play this game with pre-prepared boards (cardboard) with all of the possible numbers on. eg 1-10 or 2-12 The above game can also be used with other number operations (eg throw the dice and multiply or subtract the numbers) Division will work sometimes but that can get complicated!
C. To make a more challenging game use three dice and a hundred square and the children place a bottletop on the answer to the calculations. (eg throw $2,3,5$ and you could make $2 \times 3=6$ plus $5=11$, place a bottletop on 11 or $2 \times 3 \times 6=36$). You can limit the game to just using addition or subtraction or include all four operations. If playing in teams the children will need different coloured bottletops or one team uses upside down bottletops, or bottletops v stones to differentiate which team has covered which numbers.

Endless ways to use dice.
The 1-5 dots with
blank dice is a good way to have a zero and is also useful for number bonds to 10 .
The children will often throw numbers that don't match but they are still doing lots of mental maths. Games are an excellent way of children doing a lot of mental maths calculations without even realising they are! NB you can't make 1 by addition if using 2X 1-6 dice with the number but they could make 1 if they use subtraction, multiplication 1X1 or division)

The hundred

 square can be used in various ways. Throw the dice and the children make as many calculations as they can, they can choose one and| Digit Dice/ number cubes | A very simple and very cheap cube can be made from a toilet roll tube. Flatten the toilet roll on both sides to create a cuboid shape.
 Cut a small piece off the top and use this to measure down the tube (Alternatively measure one of the edges and measure down the side of the cuboid). Cut two pieces.. They should be identically sized cubes without a top or bottom. Turn one so it is perpendicular to the other and slide it inside the other piece. This is a very simple cube. You can use tape to make it stronger and neater but this is not essential. Draw pictures, write numbers or dots on the faces as required.
 All of the above types of cubes can be used as digit dice. These are cubes with numbers written on the faces (abstract dice). As there are only 6 faces and often $0-10$ is required one way to best utilise the dice is to have two cubes per set - one label $0,1,2,3,4,5$ and the other $0,6,7,8,9$. You will have one blank face on the $2^{\text {nd }}$ dice or you can have a second zero. | D. Simple P1/ lower ability game. Each pair/group has a board (made from milk bags, paper or card) with a grid of 1-9 dots. Throw 2 dotty dice ($0-5$) and add the dots. Find the corresponding bottletop with the digit written on it and place on the grid. Winner is the first to cover all squares. If they throw a double blank they can either throw again or choose any number on the dice to use (makes them think). This game can be made more challenging if played with the digit dice (see below) rather than the dotty dice.
 E. One child chooses a number between 2 and 12 or 0 and 10 depending on which kind of dice being used and take turns to throw two dice and add the numbers. See who is first to get the number chosen. Write the possible combinations that could be thrown to make the number on the 'Show Me' board. (could use part-part-whole diagram)
 F. Throw one dice and count out the same number of bottletops or throw more dice, add them (or subtract, multiply) and count out the same number of bottletops/stones etc. | have to try and make four in a row |
| :---: | :---: | :---: | :---: |

	Can use different colours (to match the place value resources -yellow=thousands, green=hundreds, blue=tens, red=ones.) Although yellow can be a problem as yellow markers are not readily available so black can be used instead. $\begin{aligned} & \text { A set of } 8 \text { cubes } \\ & 4 X \quad 0,1,2,3,4,5 \\ & 4 X \quad 0,6,7,8,9 \end{aligned}$ will make all numbers from 0-9999	G. Throw the dice and write the digit on the 'Show Me' board or notebook or match a flashcard. Ideas for using digit dice: H. Any of the dice games above can be used with digit dice instead of dotty dice (ie abstract rather than pictorial). I. Use to make given numbers in groups in a similar way to using small flashcards or bottletops with numbers on. J. Roll 1,2 or 3 dice and make the number using concrete materials (using place value materials). K. Roll 4 dice and arrange to make a 4 digit number (3 dice for 3 digit etc). respond to teacher's instructions (eg without turning the dice, rearrange to make the largest number possible, smallest number possible, add 6 to the number (they will have to turn or change dice for this). L. Make a given number and then respond to teacher's instructions. Add 14 to the number, rearrange to make the largest etc. If all the class are making the same numbers it is easy to assess by walking around the room. M. Using dice (with dots) and digit dice together. Throw one, two or three dice, count the dots and make the number with the digit dice. This could be done in pairs or groups with one 'team' throwing and the other making the number. N. For more challenge give the digit cubes with the higher numbers (ie 6-9) and with less able you can use the lower numbers (1-5). Play games to practise multiplication tables. Throw two cubes and multiply the numbers. If they throw a blank side they can throw again or choose any number they want. Take turns and keep a running total. The winner is the one who has the bigger total when time is up.

3. Other cubes/dice 25 shapes dice. circle perctariglog, 	Make as above but use for other maths topics. Draw different shapes, fractions, clock faces etc on the faces of the cubes. When making clock faces use an ordinary biro pen to draw the numbers on as a marker is too thick. To get a perfect circle draw around something (such as the inside of a small roll of tape)	A. Matching activities - small written flashcard that is labelled and match to one of the sides. Play as a game. Roll the cube and then find the correct flashcard to match. Or turn over a flashcard and then the members of the group take it in turns to roll the cube until they get the picture that matches the flashcard. With every roll they say what they can see. (repeatedly practising) B. Use like flashcards. In groups, the teacher asks a question and the children have to find the answer on the cube and either hold it up or place it on the table face up. Eg show me a triangle with a right angle, show me a circle, show me a shape with straight edges. The teacher circulates around the classroom to check answers. C. Play a game in groups. One child names a shape (eg square) children then take it in turns to throw the dice until the square is shown. For every throw the name of the shape is said. Award a point (or a bottletop) to the child who throws the named shape. Repeat with another child naming the shape. D. Throw the dice and another in the group draws the shape on the 'Show Me' board. Then another throws and another draws. Try and combine the drawn shapes to make a picture. E. If you have the words on one cube and the picture on the other play a game - one child rolls the words and another the picture the rest have to say when they match. Or one child rolls the word cube and then they all take it in turn to see who is first to roll the picture (or vice versa) F. With clock faces use the time fan (see picture) to show the matching time on the cube. G. To add challenge the teacher can vary the questions such as find 4 o'clock, what is half an hour later than/earlier than... H. Roll the clock cubes and put them in order.	To do pairwork and small groupwork can mean a lot of resources are needed. To make the resources go further one set can be shared between more than one group. For example the 8 clock cubes 4 can be given to each of two groups. They play games with the four cubes and then swap. Tip - throwing wooden dice on wooden desks can be noisy so children throw the dice on something like a notebook to decrease the noise.

Mini counting stick using bundles of ten.

Before using bottletops in the classroom, wash them in soapy water and leave them to dry properly.

Bottletop counting sticks and 'beads' on strings

Use a hammer and thick nail to make holes in the bottletops

Thread them onto string, wire (or banana fibre), old cables (eg phone chargers) or thin sticks. (bamboo brochette sticks are perfect or collect bamboo from the environment) The bottletops can be grouped by colour to make multiples of $1,2,3$ etc.

Grouped in tens they can be used for making bigger numbers.

A mini counting stick is made from a bamboo stick and two water bottle tops that stop the bundles falling off. When the botttletops are pushed together they keep the metal tops in place - good for storage and they don't get tangled.
A. Counting - using loose bottletops for counting as a simple concrete material
B. Single bottletops can be used for addition and subtraction.
C. Group bottletops for multiplication and division
D. Bottletops on sticks are good for counting and other number operations (+-x :) and are easy to manipulate (rather than having a big pile of single tops)
E. Sets of ten counters on string can be used on mini sticks to show 100 and are useful for counting up to 100 and beyond when you don't want to count one by one.
F. Place value and an understanding of number - a 'snake' of 1000 bottletops will amaze the children and give them a feel for what a thousand looks like. A threaded string with 100,10 and 1 can help children understand place value. Group the bottletops in tens by colour so it is easy to count them. In the example below it is 10 yellow, ten mixed colours repeated.

The 'igihumbi snake' is a very visual way of making children understand what a thousand looks like. Useful for showing 4 digit numbers eg 1267 - the number can be made with bottletops and the misconception children often have that the ' 7 ' would be the biggest number here can be clearly shown. A very effective way of showing how place affects the value of a number.
G. Using the 100 bottletop string the children can line it up and move it along the 1000 string to see how many 100 s are in 1000 or to count in 100 s to find out how many bottletops there are. Can do the same thing with the ten string and 100 string.

Bottletop strings

Long bottletop counting sticks and strings.

To prevent the bottletops falling off the ends of the sticks you can use tape, elastic bands or a small piece of rubber (eg old moto inner tube) to seal the ends. If using rubber make a small hole with a nail not using scissors - the hole needs to be small for it to stay securely on the stick.

Metre stick (eg bamboo) and tie string to one end. With plastic string the knot can be melted using a candle to make it secure. Or use a small piece of rubber from a bike/motorbike innertube. If you only want to use some of the tops or you want to divide the tops into groups or multiples, dividers can be made

using rubber or string. These are easily removed and can be placed anywhere on the stick.
H. Bottletop sticks arranged in multiples can be used for multiplication and division. For example, the children can first find out how many tops of the same colour are together. Then they can count in multiples.
I. Bottletops on strings and on wooden sticks are a useful learning material to help children when they are working individually on addition and subtraction of small numbers.
J. Strings and sticks where the bottletops can be removed is also a useful aid. Children can count, add, subtract as they thread. (See note in additional comments regarding safety of bottletops that can be removed)
K. Can be used as demo counting stick with class or children can also use it in groups.
L. Use the rubber dividers to section numbers Eg to add two numbers together, to make multiples, to isolate the numbers you want to count to -eg teaching 1-20, isolate those.
M. Counting 1-100
N. Estimating numbers between 1 and 100
O. Use in the same way as the small counting sticks and threaded strings as detailed above

Sticks and strings with bottletops should be readily available in the classroom for those children who learn in a visual or kinaesthetic way. Or for those who are struggling with the abstract idea of numbers or when numbers are being introduced.

If bottletops are used for threading it is important that the area around the hole is not sharp After the hole has been made with the nail, a hammer and the head of the nail can be used to flatten any sharp / jagged edges.

Bottletops that are blank are ideal for making number counters.
You can write a number on the bottletop and record the number pictorially (using dots) on the other side. (Concrete Pictorial Abstract - CPA)

Use marker pen to write clearly on the blank side. If you use different colours it can be easier to find sets of numbers when sharing for group work.

With bottletops that are not blank you could use tape to cover the writing on the bottletop and write on them or paint them white. If you only need one side then write on the underside of the bottletop.

0-9 sets are very versatile - good for making 2,3 and 4 digit numbers. Using different colours makes sets easier to identify.

1-10 for P1 counting and 0-10 with an extra 5 for making number bonds to 10

Store the bottletops in jars or tins and label clearly.
Or sets can be stored in envelopes made from scrap paper or old milk bags for easy distribution to groups.

P. Counting

Q. Ordering the bottletops using the dotty side
R. Ordering using the digits
S. Matching dots to digits - use two sets and the children try and pair up the dots and digits as quickly as they can.
T. Sets of 0-10 (with an extra 5) can be used for number bonds to 10. Children work in groups to pair up the numbers. Or the teacher can call out or show a number and the children hold up a bottletop with the number on it that will make 10. Eg teacher holds up 6 / says " 6 " and children hold up 4.
U. Just using the digit sides of the tops -
V. Take $1,2,3$ or 4 bottletops and arrange them to make a number.
W. Rearrange to make largest/smallest number
X. Use to generate calculations for written work (they could be placed on the grid side of the 'Show Me' board or on a desk to make a written calculation.)
Y. Make given numbers and then perform operations on them. eg - 'make the number 567. Now add 31 to it.'
Z. Use open questions for making numbers (eg make a three digit number with more tens than hundreds)
AA. Make sequences and find missing numbers.
BB. Place in ascending order / descending order
CC. Make calculations - eg children arrange the bottletops to make correct calculations (eg 45+31=76) so use the bottletops instead of writing.
DD.Play a game - all bottletops are in a bag - each group has a bag. One child pulls out a top and the children clap the number / count to the number etc. Repeat with other bottletops. Or all children pull out 1 top each and then they order them (ascending / descending). Or teacher gives an example - eg biggest number. All children pull out a top and those with the biggest number have a point. Use different questions - eg odd numbers / even numbers/ number that adds to 6 to make 10 etc

Good tactile material

Easy to get for free.
It is often assumed that bottletops are only any use for P1 but with careful choice of questions bottletops with digits on can challenge everyone. For example - take four bottletops with four different digits and arrange them to make the largest number possible (eg 9754) Now rearrange the tops to make the second largest number.

Smiley face bottletops for promoting a positive classroom	Use marker and draw smiley faces on some bottletops. Children love to be rewarded with a smile from their teacher and they love to earn a smiley face bottletop.	EE. Smiley face bottletops to give as a reward for good work, good group work, good behaviour etc. FF. See which group / pupil has the most smiley faces at the end of the day. GG. Also use as a whole class behaviour reward. All bottletops given as a reward are not kept by pupils but put into a communal jar and see how many the class have collected as a whole at the end of the day / week. Compare this with previous days / weeks. Praise the children who contributed.	Some children lack confidence with Maths. Using positive behaviour management and reward is an excellent way to boost self confidence and change children's negative attitude to maths.
General collection of bottletops	Wash and dry bottletops. Store in a box or a bag. Make them easily accessible to the children so they can find them when they need them.	HH.Counting II. Estimating - take a handful or two handfuls of bottletops and children estimate how many they think are there. Then they count to see who is closest to the correct answer. JJ. Making patterns and sequences using colours KK. Use to 'draw' numbers or shapes LL. Use on grids ('Show Me' boards or paper) to make simple graphs following group or class surveys. (eg favourite sport) MM. Use on grids (on 'Show Me' boards or paper) to make abacus numbers for place value lessons. NN. Use as counters for games (as described above in the Dice section)	Good tactile material

6. Place Value

 resourcesFlashcards of abacus numbers and digits (2,3 or 4 digits according to the level of the children

Place value flashcards (abacus)

A4 size and A6 group sets

Draw grids on A4 paper (class set) or A6 cards (group work)

Leave some blank for 'make your own numbers'

Draw 'beads' on some to make numbers and make corresponding digit cards (A5 and A7)

With blank grids use bottletops. It is a good idea to use blank bottletops with 1, 10,100 and 1000 written on them.

A. Set of 10 A4 flashcards. Play 'Point to the Flashcard'. Place digit cards around the class, hold up one abacus card, give children thinking time then a signal (eg 1,2,3 POINT). Children point to the correct answer.

B. Give a flashcard or a digit card to a pair of children. Ask one pair to stand up and show their card. The pair with the 'answer' stand up. Class checks. Repeat with another pair. You can either show an abacus or a digit card.
C. Give out abacus cards. Give clues (open questions) - eg the number I want has 3 tens/more tens than ones/ is bigger than 4000 etc. Children with possible answers stand up. Class checks.
D. 10 pupils at the front, give 5 abacus and 5 digit cards the rest of the class help to match them up
E. Group work - pupils match the digit card to the abacus card.
F. Use just digit cards and children make the abacus with bottletops and the blank grid.
G. Bottletops on blank grids to show addition and subtraction (with exchange and carrying). eg 1234 plus 9 . Add 9 bottletops to the 4 ones. Then count ten and exchange for a bottletop in the tens. Use bottletops with $1,10,100$ and 1000 on them.
H. Use 'Show Me' boards (grid on the back can be used as an abacus grid). Show a digit card. Children work in pairs or small groups to draw the abacus. On teacher's signal children show and compare with the flashcard.
I. Look at a flashcard and teacher asks children to add or subtract a number. Draw the abacus on the 'Show Me' boards and write the new number in digits.
J. Hold up abacus flashcard and children make the number using the overlapping place value cards (working together in groups)

Easy to assess whole class with this versatile game.

If more than 40 in the class either make extra flashcards or give to a group of 3 .

If resources are

limited give half of a set to each group and they swap after they have finished.	7.Teaching greater than or less than - visual aid	Crocodile picture (double sided) drawn on cardboard with thick marker pen lines for the jaw to show Pictured here are both sides of one crocodile.	A. Draw numbers in fish so the children get the idea that the crocodile will go for the bigger that the crocodile always faces the bigger number (bigger number of fish - you can demonstrate by writing the numbers and drawing a fish outline around them) number of fish. Make the symbol with two fingers, hold up for a whole class assessment of understanding when 2 numbers written on chalkboard or held up on flashcards.

9. Using the abacus for Place Value	An abacus can easily be made. 4 cm wooden cube with hole drilled in one side and a brochette stick. Cut off the top of the stick so it is not sharp. Glue the stick into the hole. Make holes in the bottletops using a thick nail. If the holes split or close up and the bottletops don't move freely on the sticks then use a nail heated in a flame to melt some of the plastic around the hole to make it permanently bigger. Put 9 tops per stick. Use tape to label the cubes Th, H, T, U (or in the local language) Every cube has four labels - one on each side to make the abacus stick multifunctional - the children just turn the cube to have whichever side they need.	A. Make given numbers B. Give out digit flashcards and children make the numbers on the abacus C. Use digit cubes. Children throw the cubes and arrange the numbers and then make them on the abacus D. Start with a number, make it on the abacus. Teacher gives an instruction eg add 21 or subtract 102 and children make the new number. E. Use overlapping place value cards or place value fans to make the numbers to show $1000+100+20+2=1122$ etc F. Make numbers on the abacus and write them in notebooks or on 'Show Me' boards. G. Use to demonstrate addition with carrying and subtraction with exchange. H. Play game - teacher or child (with teacher's help) chooses an abacus card (doesn't show it). The rest of the class guess the number by asking questions (answer YES/NO). eg are there 5 ones? (yes) Are there more tens than ones (No- therefore must be $1,2,3$ or 4 in the tens) Discuss what they know from the answers to the questions. They make the number on the abacus in groups as they go along. I. The abacus can also be used as a simple counting stick for P1 / lower ability children for counting to 10.	Train children to store materials carefully and return them to the box / abacus when they have finished. Show how when we reach ten on one abacus rod we exchange the ten beads for one on the next rod. With this game the teacher will need to help to ensure they understand what the answers to the questions tell them. When using the abacus for counting remove the labels Th HTU

Hundreds tens and ones using bamboo sticks

Different ways to teach place value are important to consolidate the children's understanding of number so it is good to use different types of materials to explain the same concepts.

Place value set from cardboard - cubes, rods and squares
These are all made from cardboard. The 'ones' are 1 cm squares (it takes too long to make cubes although technically they should be 1 cm cubes)
It is easier to draw the grids onto the
cardboard before cutting (or folding to make a cube)
These can also be made from wood and 3D rather than 2D
ie ones are $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$
The tens rod is $10 \mathrm{~cm} \times 1 \mathrm{~cm}$
The hundred is a square 10 cm by 10 cm
The thousand cube is $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ or can be a flat resource made of ten 10X10 squares

Use marker pen and a ruler to show all of the 1 cm squares.
A. Make given numbers using the materials

B. Use to show addition with carrying and exchange
C. 1 ten $=10$ ones

D. Add 29 to the number. You have 11 ones so ten ones can be exchanged for one ten
E. demonstrate subtraction with exchange

F. Hold up digit cards or write numbers on the chalkboard and groups make the numbers using the place value materials.
G. Children should have lots of opportunities to manipulate the various place value materials. Line up ten squares to see they make a ten rod.

If the 1000 cubes are too time consuming to make, 1000 can also be demonstrated with a grid

Can use a mixture of the materials in the same lesson (eg bamboo rods, abacus and cardboard materials)

Encourage pupils to look after the materials and return them to their storage boxes carefully. There are lots of very small bits.
Tip - if possible use the cheaper brochette sticks that are flatter. The more expensive ones are curved

Place value set (hundreds, tens, ones) from

bamboo

sticks
$1 \times \mathrm{H}$
$1 \times T$
$1 \times U$ (unit $=$ one)

Cut 10 cm lengths from brochette sticks. Lay a piece of tape sticky side up and turn the top and bottom over so it sticks to the table. Line up the ten cm rods on the tape so they are held in place.

Measure 1 cm lines and draw right down the sticks. Use marker and colour every other cm .

These are the tens rods.

For the ones, cut 1 cm lengths.
H. Line up ten 1 cm pieces of stick alongside the ten stick to see they are the same.
I. Give out a handful of ones and ask children to estimate the number of ones there are. Count them and group them in tens. Exchange each ten for a ten stick. Draw pictorially on paper or on the 'Show Me' boards and write the corresponding number.
J. For subtraction make a number (eg 12 using a ten stick and two ones) as the children to take away 4 ones. They cannot do it so ask them how they can make more 'ones' By 'chopping up' a ten stick (ie exchanging)

K. Measurement

L. The tens sticks, ones sticks, tens rods and ones squares are all in centimetres so can also be used as a resource for measuring.
M . As well as for practical work they can also be used for conversion of centimetres to decimetres to metres as this is also dependent on an understanding of place value.
N. Examples of practical tasks for pairs or groups
O. Use the tens stick and find three objects smaller / bigger than 10 cm .
P. How many tens sticks do you need to measure the width of the desk. How much is that in centimetres?
Q. Use tens rods to measure your notebook. Find the length and width.
R. Estimate the length of your pen in cm . Now use the apparatus to measure it.
and will roll on the children's sloped desks. Or cut sticks and flatten the sides by peeling with a knife.

Practical work is most important with developing an understanding of place value, subtraction with exchange and addition with carrying.

	Tie or group bundles of 10 ten sticks to make a hundred		
Overlapping place value numbers Make numbers 1-9999 Overlapping cards	To make the 'stand up' overlapping place value numbers fold A4 paper in half and cut Fold in half again. Write 1000 on the paper equally spacing out the digits (make a guide by folding paper the same size into quarters). Repeat making numbers 2000 9000. To make the tens you repeat the process for 1000s but fold the paper in half again. To make 100s and 1s fold paper again and cut it so that one piece is three quarters and the other a quarter. Mark the right end corner of all pieces using marker. This is the same resource but the cards are not 'stand up' and are usually made from thin cardboard. Cut 9 cards of 16 cm by 4 cm and write 1000 - 9000 on them. The hundreds cards are 12 cm by 4 cm Tens cards 8cm X4cm Ones cards 4 cm by 4 cm .	S. This resource is useful to help children understand how to write larger numbers. $1000+400+60+5$ is written 1465 but this can be very confusing. Children often put in all or some of the zeros. These cards show the zeros and the children can see where they go when they make a number. T. For example U. Ask 4 the children to come and find $1000+400+60+5$ from the numbers and stand them in a line at the front of the class. Take the 1000 and overlay the 400 taking care to line up the mark in the right hand corner. Repeat with the other numbers. You can lift the numbers to show where the zeros are. Overlap the cards to show how the numbers are made up and how the zeros are covered (ie to help with the common error of writing 1004 for 104) V. Also demonstrate that if you are missing one of the numbers the zero will stay visible. eg if there are no hundreds 1065 - the zero is the one written on the 1000s card. W. Use with other materials (eg abacus, 'Show Me' boards to make numbers) X. Use these cards alongside the other place value apparatus and when the children make the numbers using the concrete materials they also make the numbers with the overlapping place value cards.	It is very important to make sure the numbers are written spaced out (in their own quarter) or when the pieces are overlapped they may not line up correctly. The easiest way to ensure this is to fold a piece of paper into four and use as a guide. This resource is quick and easy to make and requires only 13 pieces of paper. Make sure children know to overlap the numbers at the right end (line up the marks or cut off the corner)

Place value fan

532

Cut the right hand corner off so there is a guide for the cards to line up or mark each right hand corner with marker as with the 'stand up' cards
A place value fan is made of overlapping place value cards linked together so the cards can't be lost and it is easy to use. Make a large one from scrap card such as the back of a flipchart.
Draw lines 5 cm wide. (for example)

9 cards 25 cm
9 cards 20 cm
9 cards 15 cm
9 cards 10 cm

Write the numbers on the cards being careful to space them out. Each digit should be inside the 5 cm square. Start from the lefthand side and leave the final square blank on the right (for the knot) Make a hole in all of the cards in the right hand side in the same place. Thread string through the holes making sure the numbers are in the correct order. Tie the knot tightly and melt to make a secure stud.

Smaller versions for pupils can be made using less card (eg chalk boxes) Also make 2 and 3 digit versions just using the $1 \mathrm{~s}, 10 \mathrm{~s}$ or $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s cards as required.
Y. Use in exactly the same way as the overlapping place value cards described above
Z. Use for making any number from 1-9999

AA. Make given numbers in groups
BB. Ask a child to make a number and show it using the place value fan.
CC. Other children in groups use place value materials to make that number or draw it in abacus form on 'Show Me' boards or make it using the overlapping place value cards.
DD.Use to answer questions in groups (hold up answers - in the same way as the number fans)

The place value fan is a fantastic resource numbers 1-9999 all in one place and tied together so you can't lose any
digits.
Simple to make and simple to use.
11. Fraction boards and circular fractions

Fraction strips (not cut up)

Rotating fraction tubes

Use cardboard from boxes.
Carefully measure rectangles and divide into the grid as shown.
Colour alternate sections so they stand out. Cut strips of cardboard to make 'jigsaw' pieces.

For the circular fraction boards draw around a circle (eg a small plate or a tin). Make a baseboard to fit the pieces in and a small cardboard cylinder that can be used to store the pieces.

Make in the same way as the fraction boards but don't cut up the pieces.

Fraction tubes are simple and fun. Make from toilet roll tubes stuck together. Cut the inner tube and stick it so the diameter is smaller and it will slide into the outer tube. Draw fractions and a choice of answers. Cut windows in the outer tube and rotate so the windows show the correct answer.

A. Match the pieces to the whole rectangle / circle drawn on the base boards.
B. Give out the pieces and ask children to work out what type of fraction they have. Come and match.
C. Just use the fraction strips to compare. How many halves to make 1 , how many eighths are the same as a half etc.
D. Use the 'Show Me' board to draw and shade different fractions.
E. Link to real life - think of sharing - eg a biscuit.
F. Simple comparison of fractions that are equivalent -eg how many quarters are the same as a half.
G. Think about which is bigger- Ask children would they prefer on eighth or one quarter of a biscuit. Demonstrate using a biscuit or a cardboard circle.
H. Link the shapes to the numbers on the written fraction. The number at the bottom (denominator) is the total number of pieces the whole shape is cut into. The number at the top (numerator) is how many of those pieces you have.
I. Fraction strips (not cut up)
J. Give out the fraction strips to the group ask them to explain what fraction they have and how they know.
K. Match strips to the boards.
L. Make another set cut up and line them up with the fraction strips to show how many make a whole.
M. Fraction tubes
N. Children work in groups to play with the tubes. Turn the outer tube to show a shape with a fraction coloured. Give it to another child who rotates the other tube to find the correct number fraction to match the shape. Repeat.

12. 1-10 number fan digits one side, dots on the other	Cut out fan shapes from card or milk / juice cartons. Make a hole at the bottom of each piece and thread string through the hole. Use marker to write numbers clearly at the top of the fan. On the other side stick some tape and draw dots to correspond to the number on the other side.	A. Individual or pairwork- count the dots on one side and turn over to check the digit on the other B. Use as a reference for children who struggle with numbers. When writing numbers they can check the fan to confirm. C. Teacher asks a question, children hold up the answer. D. Use for number bonds to ten. Teacher says a number, children hold up the number that pairs with it to make ten. Or play as a game in pairs.	
Number fan - 1-9999	Make in the same way as the other number fan but tie together four sets of numbers written using different colour marker pen so that it is easier to find the digits when it is being used. Tie and melt the knot to make a stud. To make a 4 digit number fan (ie 1-9999) use 1 set of 1-9 and then 3 sets of 0-9 numbers To make a 3 digit number fan use 1 set of 19 and 2 sets of $0-9$ numbers To make a 2 digit number fan use 1 set of 19 and 1 set of 0-9	A. Use like the 'Show Me' boards, teacher calls out a question and pupils (after being given thinking time) hold up the answer using the fan after the teacher has given the signal (eg 1,2,3 'Show me') B. Examples of questions - "Make the number....", "what is ... plus?" "How many sides on four rectangles?", "What is half of?" "Make a number where the number of tens is bigger than the number of hundreds" C. Making 1,2,3 or 4 digit numbers. Hold up to show the answer D. Can use for any number work. E. Could be used for assessment (eg after exercises written in notebooks the teacher can ask answers to be made using the fans)	

Shape Dice

Shape boards.

Very simple to make - cut circles, squares, rectangles and different types of triangle from cardboard. Make varying sizes.

Large shapes can be used for teacher demonstration and whole class activities and small sets can be used for group work.

Shape dice

(see dice section for how to make)

Shape boards

Use paper (eg outer wrapping of toilet paper twists easily)

Twist the paper tightly and use glue to stick onto the cardboard base to make the shape. Flashcards of shape names and properties written on paper or card.
These raised shapes are good for visually impaired/ tactile learners. A quicker and easier version is just to draw the shapes

using marker.
A. Use as flashcards to teach names and properties of shapes
B. Give out one shape to each child. Ask those with the same type of shape to stand in a group / stand up / hold up the shape.
C. Smaller shapes can be templates to draw around and label.
D. Play 'Point to the Flashcard'. Display different shapes around the room and ask children (following teacher's signal eg 1,2,3 POINT) to point to the shape. Vary questions using name of shape or properties (eg point to the triangle/ point to the shape with three sides. 'Point to the shape with four sides' Questions with more than one answer make the children think)
E. 'Show Me' boards. Children draw shapes and hold them up.
F. Put a selection of shapes into a bag. Child puts hand into bag and feels the shape (without looking at it) - describes the shape to the others and guesses what it is.
G. Play 'I am thinking of a shape'. Teacher / child thinks of a shape and the others have to guess by asking about the properties.
H. Use tape measures, rulers or string/banana fibre to measure the sides, perimeter, diameter, radius of the shapes.
I. Give out a variety of shapes to groups and sort them into the different types. Can they sort them in a different way? (eg all with straight sides, all with four corners etc)
J. Sort out the triangles from the others and then discuss ways of sorting the triangles. Teach the different triangles.
K. Give out triangles - eg isosceles, equilateral and scalene and ask them to sort or match labels.
L. Shape boards - children match the name and properties to the shape. Some have the same properties (eg square and rectangle both have 4 sides). Make three or four flashcards for each shape so if one shape ends up with more they have to decide which flashcard could be moved to another shape.
M. Shape boards are very tactile because the shape edges are raised. Good for visually impaired children. Can also be used with all children feeling the outline of the shape and guessing it without looking.

14. Measuring weight and capacity $\begin{aligned} & \text { Herght Resourch } \\ & 1 \mathrm{~L} \equiv 1 \mathrm{~kg} \\ & 1 / 2 \mathrm{~L}=500 \mathrm{~g} \\ & 250 \mathrm{~mL}=250 \mathrm{~g} \\ & 10 \mathrm{~mL}=100 \mathrm{~g} \end{aligned}$	Collect a variety of different sized containers. Some can be labelled with the size (in ml or litres) Keep in sets in paper bags - clearly labelled so they can easily be given to groups. If the containers are filled with water they can also be used as weight resources as 1litre $=1$ kilogram	Capacity activities: A. Ordering the containers ascending / descending according to how much water they could hold. B. Sort into those bigger / smaller than a litre $/ 500 \mathrm{ml}$ etc C. Use water and known sized bottles to measure the capacity of different containers (eg use a 500 ml and a 100 ml container to find out how much water can fit in an unlabelled bottle of 800ml) D. Use a 1.5 litre bottle and a 1 litre bottle and mark a litre line on the 1.5 litre bottle which can then be used for measuring which containers hold more / less than 1 litre. E. Use tiny containers to show how small one ml is. Make a cube $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$ with the top missing so they can fill it with water. Empty it onto your hand to show 1 ml . Use the 1 ml cube to fill a small object (eg a spoon). Use a straw and dip it in a cup of water. Put your finger over the end to trap the water. Mark lines on the straw to show 1 ml (it will be about 1.5 cm depending on the size of the straw) the children can experiment with straws to measure in ml . F. Weight activities: G. Fill bottles with water and use for ordering just by feeling them (using hands like scales) (or use the beam balance if available) H. Use stones, fill containers with mud / stones etc and use them to order, sort greater/less than 1 kg etc.	
15. Measuring - length using tape measures, and measuring sticks	Make a measuring stick from a 1 metre length of bamboo and mark in 10 cm sections. The sections can be coloured with marker, covered in tape or the bark peeled to make them stand out.	A. Use the metre stick to find objects longer/shorter than 1 m B. Use the stick to measure different objects - length or desk, height of child etc. C. Measure objects with variety of tapes - children select the best tape for the job 1- $10 \mathrm{~cm}, 1-20 \mathrm{~cm}$ and $1-100 \mathrm{~cm}$. D. Use for measuring the edges of shapes	The tapes can also be used as number tracks for counting as an aid to addition (counting on) or subtraction (counting back)

	Measuring tapes can be made from paper (the front cover of a flipchart is strong and glossy) milkbags and milk cartons are also good as are old toothpaste tubes. Paper tapes can be 'laminated' with transparent tape. Draw columns 1 cm wide on the paper/milk bag etc. Colour every other column. Draw lines across the desired width of the tape (eg the ruler width). Cut the pieces and stick them with tape. Write the numbers with marker. Make a variety of lengths.	E. Metre and dm sticks (from place value sets) can be used for estimating and measuring lengths. F. Draw lines of given lengths on the 'Show Me' board. G. Draw around your hand on the 'Show Me' board and measure using a tape or a dm stick. H. Encourage children to always estimate before they measure.	Metre sticks can also be used as counting sticks
16. Rice sack posters and charts.	Posters and charts make great teaching aids and also are good to be on permanent display in the classroom for reference. When copying always measure carefully and draw guidance lines in pencil and ensure that writing is neat and letters the same size.	A. Display the poster and ask children questions. B. If there are questions on the poster children can answer them in pairs / groups. C. Use as a resources for group work (eg 1 group can work on the place value poster while others are using place value equipment and then rotate) D. Eg - pictogram chart. Children answer questions and then use the chart as an example to do their own survey and either draw their own pictogram or make one using a blank grid and bottletops or the 'Show Me' board.	

17. Time - digital and analogue clocks.

Use thick cardboard to make a circle. Draw around a plate or use a piece of string with a pencil tied on the end. Hold the string in the centre of the cardboard and pull the string tight. Holding the centre firmly, draw a circle keeping the string tight to the pencil all the way around. Make the circle as big as the card will allow.
Write numbers 1 - 12 clearly in marker. Do 12,3,6,9 first at the quarters. Then evenly space the other numbers in between. Make two 'hands' for the clocks - a longer minute hand and a shorter hour hand. Colour them so they stand out if they are the same colour as the clock.
Make holes in the centre of the circle and at the bottom of the hands with a nail.
Thread string through and tie tightly. Melt both sides of the knot to make a secure stud.
Small clocks can be made for pupil activities and a larger one for the teacher or whole class activities.

Digital clocks can be made by cutting slits in cardboard and threading through a long strip of paper with times written on them (the cover of a flipchart is good paper to use as it is shiny and strong) or make flashcards that sit in clear plastic pockets that are stuck onto a piece of cardboard using transparent tape.

Activities for clocks, flashcards and time dice

A. Use the clocks (digital or analogue) like flashcards - change the times and ask the children to say the time.
B. Give the clocks to the children and ask them to show a given time.
C. Show a time on the analogue clock and ask children in pairs or groups to write the time on the 'Show Me' boards (either in words or as a digital time)
D. Repeat but this time using the digital clock and the children draw an analogue clock
E. Give groups small clocks to make given times. They can ask each other to make different times or use textbook exercises for ideas.
F. Groups make different times on the clocks. A representative from each group comes to the front and the times are put in order.
G. Play 'Point to the Flashcard'. Put large flashcards around the room showing different times (either analogue or digital) and ask the children to point to the answer.
H. Hold up a large flashcard (either digital or written in words) and ask the children to make the time on their small clocks or use the small flashcards.
I. Group work - time cubes matching activity. Roll the dice and match the flashcards to the clock face on the cube. Also matching the time written in words. If not sufficient for group work share the resources between three groups and then swap when they have completed.
J. Whole class activity - give out either a cube or a flashcard to pairs of children. The children with the cubes come to the front and stand in a line. One child reads the time from their flashcards and the children with the cubes have to find the correct clock face. Swap roles.

22. Plastic bottles

Make from a piece of cardboard. Write a question on the left side and the answer on the right but they must not line up. eg $20+21$ is at the top on the left and the answer is written further down the board on the right.
Make a hole by the question and thread and knot a piece of string (or banana fibre) Next to the answer cut a slit or small triangle. Make sure the string is long enough to reach the answer.
Can be used for any maths topic.
Make labels in paper written in marker and stick onto waste bottles.

Store in paper bags (fold down the paper to make the bag stronger) and label.
E. Play games with dice (see earlier). Throw dice or number cubes. Add, subtract, multiply (and sometimes divide) to make numbers on the hundred square. Who can cover the most with one throw of the dice? Who can make the biggest / smallest number with one throw of the dice? Play two teams with one square using different coloured counters and see who can cover the most/ get three or four in a row/make a cross with four bottletops/ etc
F. Blank hundred squares - fill the gaps with numbered bottletops, time to see how quickly they can do it or race each other to see who finishes first.
G. Point to a square on a blank square and children work out what the number is.
H. Find pairs of numbers on the square that add up to 100 or another target number.
I. Play 'Race to 100 '. Each player has a counter. Throw 2 dice and add them. Move onto that number. Next throw (eg $3+4$) move on another 7 . Keep playing until someone reaches 100. Can play with dotty dice or number cubes. Extension using multiplication. Or start on 100, use subtraction to move backwards to reach 1 .
A. Work in pairs or small groups match the answer to the question by using the string. A great way to do matching as they resource can be used over and over (whereas when lines are drawn in pen the resource can only be used once)
B. Make a whole variety of cards - eg fractions, shape, addition, subtraction, time, multiplication and division.
C. Great for revision of topics. Children can use different cards and swap (there is no need to make the same cards many times)
D. Also easy for differentiation - make some more challenging.
E. An ideal time filler when children have finished a task or before a lesson starts.
A. Use like flashcards. Children can come out the front of the classroom and arrange the numbers in order, choose the largest number, choose the smallest number, choose two bottles that add to make 12 etc
B. Use for group work - bottle with digits on can be used like flashcards or bottletops.
C. Play "Skittles". Put all of the skittles together in a group. A child stands a short distance away and throws a ball at the skittles. Another child picks up the skittles

| 24. Markers for counting
 sticks or fraction sticks | Old markers that no longer work can be
 covered in paper or tape. Draw lines or
 numbers on them to make counting sticks or
 divide into sections for fractions. | A. Mini counting sticks
 B. Mini measuring sticks if marked in cm
 C. Use to show fractions and equivalence of fractions eg line up
 half \& quarters sticks to show how many quarters make a half |
| :--- | :--- | :--- | :--- |
| D. Give blank old markers to children and they can make their | | |
| own counting sticks etc. | | |

GAMES: Games are a fun way for children to consolidate learning and to practise mathematical skills without even realising they are doing maths. There are many games already introduced in this guide. Sometimes it can be difficult to know when to introduce games and sometimes teachers are concerned that if children are playing games they are not learning. Games can be used as part of an activity within a lesson. Once games are taught children can play them over and over. Children could play if they finish an activity or they are an ideal time filler when lessons are delayed because children are late coming to school and it will be a good way of encouraging children to come on time - those that arrive early / on time can play games while they wait (although I would encourage teachers once they have even a few children to start the lesson. Children who do arrive on time shouldn't be penalised and miss out on their education because others are late.) Games need to be stored in an easily accessible place so the children can get them without disturbing the teacher.
There are thousands of different games that children can play and they should be encouraged to make up their own games. Below are just a few simple examples.

Storage of materials is very important. It takes a lot of time and effort to make the resources so encourage teachers to look after them and label them so they can find them easily.
Ideas for storage - paper bags, tins, jars, bottles, boxes, envelopes from paper or milk bags,

Freely available materials.

Manufactured resources cost a lot of money but there are so many materials in the environment and waste materials that we can use freely. An added bonus is that using them helps the environment as many of these waste materials end up being thrown away and polluting our land. Sticks, stones and beans are already used in most schools but here are some ideas of other materials you can encourage teachers (and children) to collect.

Plastic bottles
Jars
Tins
Bottletops
Milk bags
Plastic containers
Milk and juice cartons Scrap paper Card boxes (eg chalk, pens)

Cardboard boxes Tissue wrapping (eg around toilet rolls)

Scrap plastic

Flipchart covers
Toilet roll tubes
Toothpaste tubes
Empty rolls (eg tape)
Finished markers
Pen lids
Old cables
Old innertubes
Scrap wood
Old bags

Raw materials and tools needed for making resources

- 34 -

Materials that need to be
 bought

There are a few vital materials / tools that you need to make the resources in this booklet that will need to be bought.

Scissors
Tape
Markers
Ruler
Eraser
Pencil
Pen
String Glue
Hammer Nails Candle
Matches
Black paint
White paint
Chalk

A Few Final Tips...

All of the resources in this booklet were made while on a VSO placement using materials that are readily available. Many of the raw materials are of no cost being waste products such as old cartons, bottletops, plastic bottles etc. This has the added bonus of being good for the environment because we are reusing materials that would otherwise end up littering the landscape. Some of the raw materials shown may not be readily available in all countries but there will be alternative materials that can be used. It is important to be creative with the resources available. Natural materials from the environment have not been used much in this booklet but things like bamboo, banana fibre, mud and clay, beans, seeds and fruit stones, sticks and stones can all be used effectively.

In order to make best use of the ideas in this book the following tips are useful:

- Take time to make the resources well so they look appealing and they will be more long lasting. Take care when writing or dra wing that numbers and letters are clear and the drawings look professional. Old, tatty, carelessly-made materials will not be valued or looked after by the children who use them and even worse, if numbers are not legible, it may lead to confusion. Use a ruler (or a straight edge) and pencil to draw guidelines, make sure numbers are all the same height and evenly spaced. Make numbers / letters etc as large as possible.
- Make enough resources for the classes they are being used with. It is no use if teachers just make one sample that they show the children. Most of these resources are meant to be manipulated by the children. If classes are large use a split/share/swap method. (Divide one set of resources between groups, share them out and when the group has used them they swap with a group so they will end up using all of the materials)
- Storage is vital. Ideally store resources in a container (box, bag, bottle, carton etc) in sets - enough for a group or the whole class and clearly label it so the children can find the resources. Carefully stored materials will last for years.
- When giving out resources use group representatives who are responsible for collecting and returning kit. This saves time for the teacher and also is likely to mean the resources are looked after properly.
- Try and make generic resources that can be used for different lessons. For example, bottletops with numbers can be used for many different maths lessons. Eg a set of 0-9 can be used simply for ordering single digit numbers or using to make 4 or 5 digit numbers.
- Encourage children to make their own resources by collecting materials from home. They can show their parents how to use them and in this way parents who may be reluctant can become involved in their children's learning.
- Always have materials available and encourage children to use them. Avoid the idea that children progress beyond needing such materials.
- Ask local businesses, shops, bars, hotels etc to collect raw materials for you. You may even find older children and parents will help you to make the resources. Resource making takes a lot of time so utilise any help you can.
- Try out resources with other teachers so you fully understand how they can be used before trying with the children.
- The resources and activities in this booklet are not exhaustive. As you use them you will come up with ideas of your own. Write them down and share them. We can all learn from each other.

I hope you have found the ideas useful. This booklet is part of a wider resource available on http://www.meshguides.org/

